Search results for "Nickel compounds"

showing 5 items of 5 documents

Ferrimagnetic Heisenberg chain; influence of a random exchange interaction

1985

We report on the magnetic behavior of ‘‘rigid’’ ferrimagnetic chains isolated in bimetallic complexes of the EDTA and ‘‘flexible’’ ones obtained in the amorphous variety. As shown by LAXS, the only noteworthy difference in the amorphous state is the random distribution of bond angles between nearest neighbors within chains. The ‘‘rigid’’ bimetallic chains in CoNi(EDTA)6H2O are described in terms of Heisenberg model with an exchange coupling J=−7.5 K. The behavior of the amorphous variety somewhat differs, following the law X=AT−0.8 typical of REHAC. A classical spin chain model involving a J distribution and alternating g factors allows to explain successfully the temperature dependence of …

Chemical BondsMagnetic PropertiesExchange InteractionsEdtaGeneral Physics and AstronomyNickel CompoundsMagnetic SusceptibilityFerrimagnetic MaterialsFerrimagnetism:FÍSICA [UNESCO]HydratesExchange Interactions ; Ferrimagnetic Materials ; Chains ; Heisenberg Model ; Amorphous State ; Chemical Bonds ; Magnetic Susceptibility ; Cobalt Compounds ; Nickel Compounds ; Hydrates ; Edta ; Ferrimagnetism ; Magnetic PropertiesBimetallic stripCondensed matter physicsChemistryHeisenberg modelExchange interactionUNESCO::FÍSICAAmorphous StateChainsMagnetic susceptibilityAmorphous solidMolecular geometryChemical bondFerrimagnetismHeisenberg ModelCobalt Compounds
researchProduct

1D antiferromagnetism in spin‐alternating bimetallic chains

1990

The magnetic and thermal properties of the ordered bimetallic chain CoNi(EDTA)⋅6H2O in the very low‐temperature range are reported. The magnetic behavior does not exhibit the characteristic features of 1D ferrimagnets, but a continuous decrease of χmT towards zero at absolute zero. This 1D antiferromagnetic behavior results from an accidental compensation between the moments located at the two sublattices. This behavior, as well as the specific‐heat results, are modeled on the basis of an Ising‐exchange model that considers both alternating spins and Landé factors, and a zero‐field splitting on the Ni site. Eugenio.Coronado@uv.es ; Fernando.Sapina@uv.es

Magnetic PropertiesEdtaExchange InteractionsGeneral Physics and AstronomyNickel CompoundsCobalt Compounds ; Nickel Compounds ; Edta ; Hydrates ; Magnetic Properties ; One−Dimensional Systems ; Ultralow Temperature ; Antiferromagnetism ; Magnetic Moments ; Exchange Interactions ; Ising Model ; Anisotropy ; Specific HeatMagnetic MomentsAntiferromagnetism:FÍSICA [UNESCO]AntiferromagnetismHydratesAnisotropyBimetallic stripAbsolute zeroSpin-½Condensed matter physicsMagnetic momentSpinsChemistryUNESCO::FÍSICAOne−Dimensional SystemsUltralow TemperatureSpecific HeatIsing ModelAnisotropyCondensed Matter::Strongly Correlated ElectronsIsing modelCobalt Compounds
researchProduct

The ferrimagnetic compounds CoM[M’(EDTA)]2⋅4H2O(M,M’=Co,Ni): Magnetic characterization of CoCo[Ni(EDTA)2]⋅4H2O

1990

Under the terms of the Creative Commons Attribution (CC BY) license to their work.

Magnetic PropertiesExchange InteractionsEdtaNickel CompoundsGeneral Physics and AstronomyBimetalsFerrimagnetic MaterialsCondensed Matter::Materials ScienceNuclear magnetic resonance:FÍSICA [UNESCO]FerrimagnetismNickel compoundsCocoHydratesSpin (physics)Bimetallic stripChemistryUNESCO::FÍSICABimetals ; Magnetic Properties ; Exchange Interactions ; Cobalt Compounds ; Nickel Compounds ; Ferrimagnetic Materials ; Ising Model ; Edta ; HydratesCharacterization (materials science)CrystallographyIsing ModelOctahedronCondensed Matter::Strongly Correlated ElectronsIsing modelCobalt CompoundsJournal of Applied Physics
researchProduct

Synthesis, Crystal Structure, and Magnetic Properties of an Octanuclear Nickel(II) Complex with ahexahedro-Ni8 Core

1996

NickelCrystallographyMaterials sciencechemistryNickel compoundsInorganic chemistrychemistry.chemical_elementCore (manufacturing)General MedicineGeneral ChemistryCrystal structureCatalysisAngewandte Chemie International Edition in English
researchProduct

Metal ion beams from an ECR ion source using volatile compounds

1994

Abstract A new MIVOC method (Metal Ions from Volatile Compounds) at an ECR ion source gives a means to produce highly charged metal ion beams at room temperature conditions. Chemical compounds containing metallic atoms are utilized. The compound has to fulfill the two basic requirements: Vapour pressure of the compound is relatively high at room temperature. Evaporation and diffusion of the compound into the source take place without dissociation of the molecule. Up to present metal ion beams from iron and nickel compounds have been produced. The maximum currents of 56Fe9+ and 58Ni10+ from natural elements were 23.9 μA and 18.7 μA, respectively. First measurements have demonstrated the abil…

Nuclear and High Energy PhysicsChemistryVapor pressureHigh intensityMetal ions in aqueous solutionInorganic chemistryAnalytical chemistryIon sourceDissociation (chemistry)MetalNickel compoundsvisual_artvisual_art.visual_art_mediumMoleculeInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct